Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(5)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300707

RESUMO

Geleophysic dysplasia-1 (GD1) is an autosomal recessive disorder caused by ADAMTS-like 2 (ADAMTSL2) variants. It is characterized by distinctive facial features, limited joint mobility, short stature, brachydactyly, and life-threatening cardiorespiratory complications. The clinical spectrum spans from perinatal lethality to milder adult phenotypes. We developed and characterized cellular and mouse models, to replicate the genetic profile of a patient who is compound heterozygous for 2 ADAMTSL2 variants, namely p.R61H and p.A165T. The impairment of ADAMTSL2 secretion was observed in both variants, but p.A165T exhibited a more severe impact. Mice carrying different allelic combinations revealed a spectrum of phenotypic severity, from lethality in knockout homozygotes to mild growth impairment observed in adult p.R61H homozygotes. Homozygous and hemizygous p.A165T mice survived but displayed severe respiratory and cardiac dysfunction. The respiratory dysfunction mainly affected the expiration phase, and some of these animals had microscopic post-obstructive pneumonia. Echocardiograms and MRI studies revealed a significant systolic dysfunction, accompanied by a reduction of the aortic root size. Histology verified the presence of hypertrophic cardiomyopathy with myocyte hypertrophy, chondroid metaplasia, and mild interstitial fibrosis. This study revealed a substantial correlation between the degree of impaired ADAMTSL2 secretion and the severity of the observed phenotype in GD1.


Assuntos
Proteínas ADAMTS , Doenças do Desenvolvimento Ósseo , Deformidades Congênitas dos Membros , Adulto , Humanos , Animais , Camundongos , Proteínas ADAMTS/genética , Doenças do Desenvolvimento Ósseo/genética , Mutação , Fenótipo
2.
Am J Med Genet A ; : e63556, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38348595

RESUMO

Phenotypic features of a hereditary connective tissue disorder, including craniofacial characteristics, hyperextensible skin, joint laxity, kyphoscoliosis, arachnodactyly, inguinal hernia, and diverticulosis associated with biallelic pathogenic variants in EFEMP1 have been previously described in four patients. Genome sequencing on a proband and her mother with comparable phenotypic features revealed that both patients were heterozygous for a stop-gain variant c.1084C>T (p.Arg362*). Complementary RNA-seq on fibroblasts revealed significantly reduced levels of mutant EFEMP1 transcript. Considering the absence of other molecular explanations, we extrapolated that EFEMP1 could be the cause of the patient's phenotypes. Furthermore, nonsense-mediated decay was demonstrated for the mutant allele as the principal mechanism for decreased levels of EFEMP1 mRNA. We provide strong clinical and genetic evidence for the haploinsufficiency of EFEMP1 due to nonsense-medicated decay to cause severe kyphoscoliosis, generalized hypermobility of joints, high and narrow arched palate, and potentially severe diverticulosis. To the best of our knowledge, this is the first report of an autosomal dominant EFEMP1-associated hereditary connective tissue disorder and therefore expands the phenotypic spectrum of EFEMP1 related disorders.

3.
Front Cell Dev Biol ; 11: 1245747, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38481391

RESUMO

Background: Intra-amniotic inflammation (IAI) is associated with increased risk of preterm birth and bronchopulmonary dysplasia (BPD), but the mechanisms by which IAI leads to preterm birth and BPD are poorly understood, and there are no effective therapies for preterm birth and BPD. The transcription factor c-Myc regulates various biological processes like cell growth, apoptosis, and inflammation. We hypothesized that c-Myc modulates inflammation at the maternal-fetal interface, and neonatal lung remodeling. The objectives of our study were 1) to determine the kinetics of c-Myc in the placenta, fetal membranes and neonatal lungs exposed to IAI, and 2) to determine the role of c-Myc in modulating inflammation at the maternal-fetal interface, and neonatal lung remodeling induced by IAI. Methods: Pregnant Sprague-Dawley rats were randomized into three groups: 1) Intra-amniotic saline injections only (control), 2) Intra-amniotic lipopolysaccharide (LPS) injections only, and 3) Intra-amniotic LPS injections with c-Myc inhibitor 10058-F4. c-Myc expression, markers of inflammation, angiogenesis, immunohistochemistry, and transcriptomic analyses were performed on placenta and fetal membranes, and neonatal lungs to determine kinetics of c-Myc expression in response to IAI, and effects of prenatal systemic c-Myc inhibition on lung remodeling at postnatal day 14. Results: c-Myc was upregulated in the placenta, fetal membranes, and neonatal lungs exposed to IAI. IAI caused neutrophil infiltration and neutrophil extracellular trap (NET) formation in the placenta and fetal membranes, and neonatal lung remodeling with pulmonary hypertension consistent with a BPD phenotype. Prenatal inhibition of c-Myc with 10058-F4 in IAI decreased neutrophil infiltration and NET formation, and improved neonatal lung remodeling induced by LPS, with improved alveolarization, increased angiogenesis, and decreased pulmonary vascular remodeling. Discussion: In a rat model of IAI, c-Myc regulates neutrophil recruitment and NET formation in the placenta and fetal membranes. c-Myc also participates in neonatal lung remodeling induced by IAI. Further studies are needed to investigate c-Myc as a potential therapeutic target for IAI and IAI-associated BPD.

4.
Biomedicines ; 10(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35740263

RESUMO

Multiple Sclerosis (MS) is a chronic CNS autoimmune disease characterized by immune-mediated demyelination, axon loss, and disability. Dysregulation of transglutaminase-2 (TG2) has been implicated in disease initiation and progression. Herein, TG2 expression in post-mortem human brain tissue from Relapsing Remitting MS (RRMS) or Progressive MS (PMS) individuals were examined and correlated with the presence of TG2 binding partners and effectors implicated in the processes of inflammation, scar formation, and the antagonism of repair. Tissues from Relapsing-Remitting Multiple Sclerosis (RRMS; n = 6), Progressive Multiple Sclerosis (PMS; n = 5), and non-MS control (n = 6) patients underwent immunohistochemistry for TG2, PLA2, COX-2, FN, CSPG, and HSPG. TG2 was strongly upregulated in active RRMS and PMS lesions, within blood vessels and the perivascular tissue of sclerotic plaques. TG2 colocalization was observed with GFAP+ astrocytes and ECM, including FN, HSPG, and CSPG, which also increased in either RRMS or PMS lesions. Although TG2 was not colocalized with inflammatory mediators COX-2 and PLA2, or the macrophage-microglia marker Iba1, its increased expression correlated with their elevation in active RRMS and PMS lesions. In summary, the correlation of strong TG2 induction in either RRMS or PMS with some of its binding partners but not others implicates potentially different roles for TG2 in disparate MS forms that may warrant further investigation.

5.
FASEB J ; 36(1): e22077, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34878671

RESUMO

Endothelial cells play an essential role in inflammation through synthesis and secretion of chemoattractant cytokines and expression of adhesion molecules required for inflammatory cell attachment and infiltration. The mechanisms by which endothelial cells control the pro-inflammatory response depend on the type of inflammatory stimuli, endothelial cell origin, and tissue involved. In the present study, we investigated the role of the transcription factor c-Myc in inflammation using a conditional knockout mouse model in which Myc is specifically deleted in the endothelium. At a systemic level, circulating monocytes, the chemokine CCL7, and the extracellular-matrix protein osteopontin were significantly increased in endothelial c-Myc knockout (EC-Myc KO) mice, whereas the cytokine TNFSF11 was downregulated. Using an experimental model of steatohepatitis, we investigated the involvement of endothelial c-Myc in diet-induced inflammation. EC-Myc KO animals displayed enhanced pro-inflammatory response, characterized by increased expression of pro-inflammatory cytokines and leukocyte infiltration, and worsened liver fibrosis. Transcriptome analysis identified enhanced expression of genes associated with inflammation, fibrosis, and hepatocellular carcinoma in EC-Myc KO mice relative to control (CT) animals after short-exposure to high-fat diet. Analysis of a single-cell RNA-sequencing dataset of human cirrhotic livers indicated downregulation of MYC in endothelial cells relative to healthy controls. In summary, our results suggest a protective role of endothelial c-Myc in diet-induced liver inflammation and fibrosis. Targeting c-Myc and its downstream pathways in the endothelium may constitute a potential strategy for the treatment of inflammatory disease.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Endotélio/metabolismo , Fígado Gorduroso , Cirrose Hepática , Proteínas Proto-Oncogênicas c-myc/deficiência , Animais , Endotélio/patologia , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Técnicas de Inativação de Genes , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-myc/metabolismo
6.
Neurosci Lett ; 748: 135690, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33540059

RESUMO

Polysialic acid (PolySia) is a critical post-translational modification on the neural cell adhesion molecule (NCAM, a.k.a., CD56), important for cell migration and axon growth during nervous system development, plasticity and repair. PolySia induction on Schwann cells (SCs) enhances their migration, axon growth support and ability to improve functional recovery after spinal cord injury (SCI) transplantation. In the current investigation two methods of PolySia induction on SCs, lentiviral vector transduction of the mouse polysialytransferase gene ST8SIA4 (LV-PST) or enzymatic engineering with a recombinant bacterial PST (PSTNm), were examined comparatively for their effects on PolySia induction, SC migration, the innate immune response and axon growth after acute SCI. PSTNm produced significant PolySia induction and a greater diversity of surface molecule polysialylation on SCs as evidenced by immunoblot. In the scratch wound assay, PSTNm was superior to LV-PST in the promotion of SC migration and gap closure. At 24 h after SCI transplantation, PolySia induction on SCs was most pronounced with LV-PST. Co-delivery of PSTNm with SCs, but not transient cell exposure, led to broader induction of PolySia within the injured spinal cord due to polysialylation upon both host cells and transplanted SCs. The innate immune response after SCI, measured by CD68 immunoreactivity, was similar among PolySia induction methods. LV-PST or PSTNm co-delivery with SCs provided a similar enhancement of SC migration and axon growth support above that of unmodified SCs. These studies demonstrate that LV-PST and PSTNm provide comparable acute effects on SC polysialation, the immune response and neurorepair after SCI.


Assuntos
Movimento Celular/efeitos dos fármacos , Células de Schwann/efeitos dos fármacos , Ácidos Siálicos/farmacologia , Sialiltransferases/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Movimento Celular/fisiologia , Modelos Animais de Doenças , Camundongos , Moléculas de Adesão de Célula Nervosa , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Células de Schwann/metabolismo , Sialiltransferases/genética , Traumatismos da Medula Espinal/fisiopatologia
7.
Biomed Res Int ; 2015: 458624, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26539498

RESUMO

The introduction of genes into glial cells for mechanistic studies of cell function and as a therapeutic for gene delivery is an expanding field. Though viral vector based systems do exhibit good delivery efficiency and long-term production of the transgene, the need for transient gene expression, broad and rapid gene setup methodologies, and safety concerns regarding in vivo application still incentivize research into the use of nonviral gene delivery methods. In the current study, aviral gene delivery vectors based upon cationic lipid (Lipofectamine 3000) lipoplex or polyethylenimine (Viromer RED) polyplex technologies were examined in cell lines and primary glial cells for their transfection efficiencies, gene expression levels, and toxicity. The transfection efficiencies of polyplex and lipoplex agents were found to be comparable in a limited, yet similar, transfection setting, with or without serum across a number of cell types. However, differential effects on cell-specific transgene expression and reduced viability with cargo loaded polyplex were observed. Overall, our data suggests that polyplex technology could perform comparably to the market dominant lipoplex technology in transfecting various cells lines including glial cells but also stress a need for further refinement of polyplex reagents to minimize their effects on cell viability.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Lipídeos/química , Neuroglia/metabolismo , Animais , Expressão Gênica , Vetores Genéticos , Células HEK293 , Humanos , Lipídeos/genética , Neuroglia/patologia , Ratos , Transfecção/métodos
8.
PLoS One ; 7(12): e52662, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23285138

RESUMO

Arsenic trioxide (ATO) has been tested in relapsed/refractory multiple myeloma with limited success. In order to better understand drug mechanism and resistance pathways in myeloma we generated an ATO-resistant cell line, 8226/S-ATOR05, with an IC50 that is 2-3-fold higher than control cell lines and significantly higher than clinically achievable concentrations. Interestingly we found two parallel pathways governing resistance to ATO in 8226/S-ATOR05, and the relevance of these pathways appears to be linked to the concentration of ATO used. We found changes in the expression of Bcl-2 family proteins Bfl-1 and Noxa as well as an increase in cellular glutathione (GSH) levels. At low, clinically achievable concentrations, resistance was primarily associated with an increase in expression of the anti-apoptotic protein Bfl-1 and a decrease in expression of the pro-apoptotic protein Noxa. However, as the concentration of ATO increased, elevated levels of intracellular GSH in 8226/S-ATOR05 became the primary mechanism of ATO resistance. Removal of arsenic selection resulted in a loss of the resistance phenotype, with cells becoming sensitive to high concentrations of ATO within 7 days following drug removal, indicating changes associated with high level resistance (elevated GSH) are dependent upon the presence of arsenic. Conversely, not until 50 days without arsenic did cells once again become sensitive to clinically relevant doses of ATO, coinciding with a decrease in the expression of Bfl-1. In addition we found cross-resistance to melphalan and doxorubicin in 8226/S-ATOR05, suggesting ATO-resistance pathways may also be involved in resistance to other chemotherapeutic agents used in the treatment of multiple myeloma.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Arsenicais/farmacologia , Resistencia a Medicamentos Antineoplásicos , Glutationa/metabolismo , Mieloma Múltiplo/metabolismo , Óxidos/farmacologia , Apoptose/genética , Trióxido de Arsênio , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Melfalan/farmacologia , Antígenos de Histocompatibilidade Menor , Mieloma Múltiplo/genética , Fenótipo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
9.
Blood ; 118(5): 1329-39, 2011 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-21659544

RESUMO

Dependence on Bcl-2 proteins is a common feature of cancer cells and provides a therapeutic opportunity. ABT-737 is an antagonist of antiapoptotic Bcl-2 proteins and therefore is a good predictor of Bcl-x(L)/Bcl-2 dependence. Surprisingly, analysis of Mcl-1-dependent multiple myeloma cell lines revealed codependence on Bcl-2/Bcl-x(L) in half the cells tested. Codependence is not predicted by the expression level of antiapoptotic proteins, rather through interactions with Bim. Consistent with these findings, acquired resistance to ABT-737 results in loss of codependence through redistribution of Bim to Mcl-1. Overall, these results suggest that complex interactions, and not simply expression patterns of Bcl-2 proteins, need to be investigated to understand Bcl-2 dependence and how to better use agents, such as ABT-737.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Membrana/fisiologia , Mieloma Múltiplo/genética , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteína bcl-X/fisiologia , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas de Membrana/metabolismo , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides , Nitrofenóis/farmacologia , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/farmacologia , Sulfonamidas/farmacologia , Distribuição Tecidual , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
10.
Mol Cancer Ther ; 8(5): 1197-206, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19417148

RESUMO

Here, we report on the organic arsenical darinaparsin (ZIO-101, S-dimethylarsino-glutathione) and its anti-myeloma activity compared with inorganic arsenic trioxide. Darinaparsin induced apoptosis in multiple myeloma cell lines in a dose-dependent manner, and the addition of N-acetylcysteine, which increases intracellular glutathione (GSH), blocked cytotoxicity of both darinaparsin and arsenic trioxide. In contrast to arsenic trioxide, intracellular GSH does not appear to be important for darinaparsin metabolism, as an inhibitor of GSH synthesis, buthionine sulfoximine, had little effect on drug activity. This discrepancy was resolved when we determined the effects of thiols on drug uptake. The addition of exogenous GSH, L-cysteine, or D-cysteine prevented darinaparsin cellular uptake and cell death but had no effect on the uptake or activity of arsenic trioxide, suggesting a difference in the transport mechanism of these two drugs. In addition, gene expression profiling revealed differences in the signaling of protective responses between darinaparsin and arsenic trioxide. Although both arsenicals induced a transient heat shock response, only arsenic trioxide treatment induced transcription of metal response genes and anti-oxidant genes related to the Nrf2-Keap1 pathway. In contrast to the protective responses, both arsenicals induced up-regulation of BH3-only proteins. Moreover, silencing of BH3-only proteins Noxa, Bim, and Bmf protected myeloma cells from darinaparsin-induced cell death. Finally, treatment of an arsenic trioxide-resistant myeloma cell line with darinaparsin resulted in dose-dependent apoptosis, indicating that cross-resistance does not necessarily develop between these two forms of arsenic in multiple myeloma cell lines. These results suggest darinaparsin may be useful as an alternative treatment in arsenic trioxide-resistant hematologic cancers.


Assuntos
Arsenicais/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glutationa/análogos & derivados , Mieloma Múltiplo/metabolismo , Óxidos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Trióxido de Arsênio , Arsenicais/metabolismo , Butionina Sulfoximina/metabolismo , Butionina Sulfoximina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisteína/metabolismo , Cisteína/farmacologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Glutationa/farmacologia , Humanos , Óxidos/metabolismo
11.
J Biol Chem ; 284(19): 12886-95, 2009 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-19279006

RESUMO

Arsenicals are both environmental carcinogens as well as therapeutic agents for the treatment of trypanosomiasis and more recently cancer. Arsenic trioxide (ATO) has been successfully used for the treatment of acute promyelocytic leukemia (APL) and has activity in multiple myeloma (MM). While signaling events associated with carcinogenesis have been well studied, it still remains to be determined which of these events are involved in anti-cancer signaling. To better define this response, gene expression profiling following ATO treatment of four MM cell lines was performed. The pattern was consistent with a strong antioxidative response, particularly of genes activated by Nrf2. While Nrf2 is expressed constitutively at the mRNA level, the protein is not detected in untreated cells. Consistent with inactivation of Keap1, Nrf2 protein is stabilized and present in the nucleus within 6 h of ATO treatment. Despite the activation of this antioxidative response, ROS may not be important in ATO-induced death. Inhibition of ATO-induced ROS with butylated hydroxyanisole (BHA) does not affect Nrf2 activation or cell death. Moreover, silencing Nrf2 had no effect on ATO-induced apoptosis. Together these data suggest that ROS is not important in the induction of the antioxidative response or cellular death by ATO.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Arsenicais/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Óxidos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Trióxido de Arsênio , Western Blotting , Hidroxianisol Butilado/farmacologia , Perfilação da Expressão Gênica , Inibidores do Crescimento/farmacologia , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Frações Subcelulares
12.
Blood ; 111(10): 5152-62, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18354037

RESUMO

The use of arsenic trioxide (ATO) to treat multiple myeloma (MM) is supported by preclinical studies as well as several phase 2 studies, but the precise mechanism(s) of action of ATO has not been completely elucidated. We used gene expression profiling to determine the regulation of apoptosis-related genes by ATO in 4 MM cell lines and then focused on Bcl-2 family genes. ATO induced up-regulation of 3 proapoptotic BH3-only proteins (Noxa, Bmf, and Puma) and down-regulation of 2 antiapoptotic proteins Mcl-1 and Bcl-X(L). Coimmunoprecipitation demonstrated that Noxa and Puma bind Mcl-1 to release Bak and Bim within 6 hours of ATO addition. Bak and Bim are also released from Bcl-X(L). Silencing of Bmf, Noxa, and Bim significantly protected cells from ATO-induced apoptosis, while Puma silencing had no effect. Consistent with a role for Noxa inhibition of Mcl-1, the Bad-mimetic ABT-737 synergized with ATO in the killing of 2 MM lines. Finally, Noxa expression was enhanced by GSH depletion and inhibited by increasing GSH levels in the cells. Understanding the pattern of BH3-only protein response should aid in the rational design of arsenic-containing regimens.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Apoptose/efeitos dos fármacos , Arsenicais/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Óxidos/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas Reguladoras de Apoptose/fisiologia , Trióxido de Arsênio , Proteína 11 Semelhante a Bcl-2 , Morte Celular , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Mieloma Múltiplo/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia
13.
Int J Cancer ; 113(5): 730-7, 2005 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-15499630

RESUMO

In order to identify regulatory genes involved in the development of an apoptosis-resistant phenotype in patients with chemotherapy refractory B-cell chronic lymphocytic leukemia (B-CLL) expression of apoptosis-regulating genes in B-CLL cells was quantified using cDNA arrays and RT-PCR. Data were obtained from and compared between 2 groups of B-CLL patients with either nonprogressive, indolent, previously untreated disease and with leukemic cells sensitive to in vitro fludarabine-induced apoptosis, referred to as sensitive B-CLL (sB-CLL) or with progressive, chemotherapy refractory disease and with leukemic cells resistant to in vitro fludarabine-induced apoptosis, referred to as resistant B-CLL (rB-CLL). By performing a supervised clustering of genes that most strongly discriminated between rB-CLL vs. sB-CLL a small group of genes was identified, where bfl-1 was the strongest discriminating gene (p < 0.05), with higher expression in rB-CLL. A group of apoptosis-regulating genes were modulated during induction of apoptosis by serum deprivation in vitro in a similar manner in all cases studied. However, bfl-1 was preferentially downregulated in sB-CLL as compared to rB-CLL (p < 0.05). We conclude that bfl-1 may be an important regulator of B-CLL apoptosis, which could contribute to disease progression and resistance to chemotherapy, and as such represent a future potential therapeutic target.


Assuntos
Apoptose/genética , Resistencia a Medicamentos Antineoplásicos , Leucemia Linfocítica Crônica de Células B/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Vidarabina/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/efeitos adversos , Meios de Cultura Livres de Soro/farmacologia , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Feminino , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Regulação para Cima , Vidarabina/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...